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Abstract. Large Language Models have captured the imagination of the public and the technical community. As powerful as 

they are they have problems that prohibit their use for highly skilled users. These issues are hallucinations, bias, black-box 

reasoning, and lack of domain depth. One of the most popular architectures to alleviate these problems is Retrieval Augmented 

Generation (RAG). In a RAG architecture the LLM is utilized to generate vectors and to parse and generate natural language. 

The knowledge base for a RAG architecture is typically a set of documents focused on a particular type of vertical (question 

answering) or horizontal (domain) set of use cases as opposed to the general knowledge base of an LLM. Typically, the corpus 

for the RAG knowledge base is stored in a relational database. This project investigates the use of an ontology and knowledge 

graph to form a domain specific knowledge base for RAG in order to leverage LLMs for specific domains without the four 

problems that typically make them inappropriate for mission and life critical domains. The domain is support of dental 

clinicians in India who face specific problems that can be significantly improved by better, timely, and easily accessible access 

to the latest knowledge on dental material products. We demonstrate that using an ontology and knowledge graph to implement 

RAG has several benefits such as rapid agile development and retrieval by reformulation browsing. 
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1. Introduction  

The goal of this project is to develop a semantic search tool for dental products and materials. The 

first part of the research was to work with the OBO community to develop an ontology that modeled the 

domain. The next step described in this paper is to use this ontology as the foundation for a semantic 

search tool for dental clinicians in India. After evaluating various approaches to semantic search, it was 

clear that using a Large Language Model (LLM) integrated with the ontology in an architecture known 

as Retrieval Augmented Generation (RAG) was the most appropriate method. This paper describes the 

first prototype system that implements such an architecture.  

 

Some brief notes on terminology and presentation in this paper: ontology refers to what is known as 

the T-Box in the semantic web community; the classes and properties. Knowledge graph refers to the 

ontology plus the data, i.e., the T-Box and the A-Box. Ontology is used when discussing creating or 

editing the model in Protégé and knowledge graph for the much larger model plus data stored in the 

AllegroGraph triplestore. Names of classes have each word capitalized with a space between them for 
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readability and are in Calibri font, e.g., My Class and properties have the first word in lower case and all 

other words in upper case, also in Calibri, e.g., my Object Property. Object properties typically follow 

the has Property and is Property Of naming scheme for a property and its inverse. Data properties tend 

to be simpler (and many are from reusable vocabularies such as Dublin Core) e.g., dct:abstract, 
dct:creator. All names of entities in the ontology use singular case as is the standard. However, we will 

sometimes use the plural of a name for readability. Calibri font is also used for examples of SPARQL 

code and output from ChatGPT.  

 

The structure of this paper is as follows: this section provides an overview of the domain problem, 

why it is a difficult and important problem, the innovative approach to solve it, and a review of relevant 

previous literature. Section two describes the principle of the approach and the reasons for utilizing the 

RAG architecture integrated with an ontology. Section three describes the technical architecture of the 

current system and a specific use case of a clinician posing a question, the answer that is returned, how 

the answer is created, and how this compares to the answer that a generic LLM would create. Section 

four is a critical evaluation of related work integrating ontologies and RAG, a discussion of future plans, 

and a conclusion discussing general lessons that can be learned from this work.  

1.1. The Need for better, faster, and easier access to the best knowledge about dental materials and 

products 

The first part of the project, described in (Dutta, 2023), was to develop an OWL ontology for Dental 

Materials and Products. A critical distinction in this ontology is between Dental Materials and Dental 
Material Products. Dental Materials are raw materials such as dental cement and resin. These are the 

raw materials used to create Dental Material Products. Dental Material Products are manufactured and 

typically use two or more Dental Materials in unique ways to solve problems such as direct restoration 

which is our current focus. There already was an excellent reusable OBO vocabulary for Oral Health 

and Diseases (Duncan, 2020) that was reused for this project. However, it did not cover the complex 

space of dental materials and products. In the first phase of the project, the team collaborated with the 

OBO developers of the OHD ontology to develop the ontology so that it was consistent with OBO 

standards and could utilize OHD. In addition, the OHD team incorporated many of the dental material 

entities from this project.  

 

The next phase (the subject of this paper) is to develop a semantic search tool for journal articles, 

product manuals, and other relevant knowledge on the topic. Target users are doctors of dentistry and 

other dental professionals in India. The reason such a tool is needed are:  

 

1. The field is extraordinarily complex and rapidly evolving. It is complex because in addition to 

requiring medical knowledge it also requires understanding many other domains such as 

materials engineering, chemistry, metallurgy, general medicine, and surgery. Advancements in 

new materials used for dental products are occurring at a very rapid rate due to scientific 

progress leading to new kinds of materials and industrial progress that leverages the scientific 

advances for new products. Thus, it is difficult for busy clinicians to remain current on the 

latest updates and best practices in the field. 

2. In India and other developing nations there is a large population who can barely afford 

healthcare and will do whatever possible to decrease their costs. As a result, they and the 

clinicians that support them often fall victim to using fraudulent or defective materials. For 

example, it is common for products to be taken off the market in nations with strong regulation 
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such as the United Kingdom only to have those products resold to clinicians in India via sites 

such as eBay (MHRA, 2014), (Price, 2022). The short-term savings from cheaper defective 

products can have catastrophic long-term consequences. 

 

The goal of the project is to provide a tool that will help busy clinicians by providing them with 

specific answers to questions, references to papers and other knowledge sources that support the answer, 

and the ability to easily browse the knowledge base and corpus to find additional relevant knowledge.  

1.2. Approach to semantic search: Integrate Large Language Models (LLMs) with ontologies to 

implement Retrieval Augmented Generation (RAG) 

Semantic search is one of the first and most popular applications for semantic web and knowledge 

graph technology (Berners-Lee, 2001) (Noy, 2019). As described in (DeBellis, 2023), the most 

common approach is to create a knowledge graph based on the metadata of a corpus for a particular 

domain as well as to use Natural Language Processing (NLP) techniques to create indices to easily 

categorize and find appropriate documents and other data. One of the advantages of the ontology 

approach is that the types of searches are highly flexible since knowledge graphs can exploit graph 

query languages such as SPARQL which provide many more options than table-based search using 

SQL (W3C, 2012). In addition, after a user performs an initial search, they can use the semantics of the 

ontology to further explore relevant concepts and documents.  

 

Several technologies to implement semantic search were evaluated. These included various NLP 

technologies such as translating natural language to SPARQL and using libraries such as Spacy 

(Altinok, 2021) and NLTK (Bird, 2009) for Named Entity Recognition (NER).  The result of this 

evaluation was to utilize a Large Language Model (LLM). The  advantages of this approach are that 

vector embedding can be used to represent the meaning of text via the APIs of the LLM. In addition, the 

capabilities of the LLM to understand questions and generate answers in intuitive natural language can 

be leveraged. This approach provides the best capabilities of alternative approaches all in one single 

architecture. More details on all these topics will be discussed in subsequent sections.  

 

Given the amazing progress in LLM technology, it was a valid question to ask if an ontology 

approach was even necessary. Perhaps LLMs have achieved such a maturity that clinicians could be 

trained on how to appropriately query an LLM? This is known as prompt engineering. The answer an 

LLM returns will vary greatly based on the way a question is framed. However, when discussing the 

question with clinicians and evaluating the literature and the performance of ChatGPT on sample 

competency questions, it was clear that as powerful as they have become, LLMs alone were not the 

solution to the problem for four reasons: 

 

1. Hallucinations. A conventional LLM such as ChatGPT or Microsoft CoPilot will always 

generate an answer. Due to the way such LLMs are trained they have little insight into the 

appropriateness of their answers and while they usually generate answers that are appropriate, 

they may sometimes (with equal confidence) generate answers that are wrong, incomplete, or 

don’t incorporate the best available evidence. These answers are known as hallucinations. 

Hallucinations are the price we pay for the general power of Large Language Models and are an 

inevitable cost of using such models (Xu, 2024). 

2. Bias. LLMs are trained on terabytes of text culled from sources such as the Internet. As a result, 

they inevitably reflect the bias of the cultures that produced their training sets.  
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3. Black-box reasoning. LLMs currently cannot do reflection. I.e., unlike symbolic computing that 

can provide a trace of the deductions that led to a new inference, LLMs can’t analyze the chain 

of inferences that led to a specific answer. This lack of reflection makes LLMs black boxes that 

provide an answer with no justification. Evidence from previous AI research indicates that 

experts such as doctors are far less likely to trust an automated reasoner if it cannot justify its 

conclusion (Verdicchio, 2022). In addition, when the team’s domain expert performed 

experiments where an LLM was prompted to provide references it often provided references 

that could not be found or were not relevant to the answer. 

4. Lack of depth. While LLMs are trained on a huge amount of data and do indeed include 

abstracts of many papers in the domain, they are meant to be general purpose tools rather than 

domain specific (Lewis, 2020). As a result, they have some knowledge of the domain of dental 

products and materials but lack the breadth (they do not cover all the papers and other 

knowledge sources required) and the depth (they only analyze the abstracts of papers rather 

than the complete paper) required to support clinicians.  

 

  For these reasons, generic LLMs are usually not appropriate for providing information to 

professionals. From customer service representatives to researchers and doctors, one of the most 

common approaches to leverage LLMs while addressing these issues is Retrieval Augmented 

Generation (RAG).  

1.3. Retrieval Augmented Generation (RAG) solves the problems that make Large Language Models 

inappropriate for many domain-specific use cases  

Retrieval Augmented Generation (RAG) is an architecture that utilizes components of the LLM to 

parse questions posed in natural languages, to generate semantic vectors for text, and to provide 

answers by generating natural language. However, rather than use the generic knowledge acquired by 

an LLM, a RAG architecture substitutes a specific corpus of curated documents. These documents are 

the only source used to provide answers.  

 

The RAG architecture prevents hallucinations by utilizing a nearest neighbor algorithm to compute 

semantic distance between a question and the text in the corpus. This includes a threshold that defines 

the maximum allowable semantic distance for an acceptable answer. If nothing in the corpus is above 

the threshold then the RAG system displays a predefined answer that not enough information exists to 

provide a reliable answer to the user’s question. RAG reduces bias by utilizing documents which have 

been developed for a specific audience and adhere to standards for peer review and objectivity. It is not 

Black Box reasoning because along with the answer generated by the LLM, it always includes the 

specific text(s) from the corpus that was utilized to generate the answer. It has breadth and depth 

because rather than using a sampling from the entire Internet, it focuses exclusively on a specific 

domain.  

1.4. Review of previous work 

This section provides an overview of previous work on semantic search with ontologies and RAG 

systems. RAG is one of the biggest trends in applied research at the moment. As described above it fills 

an essential niche in leveraging the power of LLMs for specific domain problems from customer 

support to medical advice. This architecture can apply to virtually any domain in business, science, 

defense, and government. However, the vast majority of RAG implementations use traditional relational 

databases since that is what most developers are familiar with. The most important innovation of this 
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project is to demonstrate the power of using a knowledge graph to model the domain and corpus 

documents rather than a relational database. This system is one of the first to do this. In this section we 

review previous work on semantic search based on knowledge graphs and on implementations of RAG. 

In section 4.1 we contrast our prototype with other systems that integrate ontologies and LLMs.  

1.4.1. Review of previous knowledge graph implementations of semantic search 

Semantic search for was one of the first applications that motivated the Semantic Web. In the 

Scientific American article that launched the Semantic Web (Berners-Lee, 2001), semantic search was 

one of the motivating use cases. The goal being to allow searching by concepts rather than keywords. 

Since that time there have been countless research and industry implementations of semantic search 

across many different domains using many different techniques. A full review of the topic would 

require a large paper of its own. However, for our purposes we focus on  the two most critical issues for 

semantic search and representative examples of the various approaches to each issue. These two issues 

are: 

 

1. User Interface (UI). Having a semantic model is only useful if the user can take advantage of 

it. There are essentially three approaches used for a semantic search UI: Natural Language 

Processing (NLP), forms-based, and graph-based. NLP attempts to parse natural language 

(often some subset of natural language) and convert it into a query language. Forms-based 

create forms that seem similar to traditional search but leverage the semantics of the ontology 

to define a search in the form. These options can be highly dynamic, taking advantage of the 

reasoner to tailor the options presented to the user based on previous queries or an 

understanding of their task. Graph-based UIs utilize the structure of the knowledge graph and 

visualize the objects of search and the relevant semantic concepts in a graph that the user can 

browse and manipulate to explore the domain.  

2. Indexing. The documents and other objects to be searched for are usually indexed by 

traditional keywords. Mapping these objects to the ontology is critical to get the value of 

semantic search. There are several different approaches to indexing.  

 

Both these topics are described in detail in the following sections. 

1.4.1.1. Semantic search user interfaces 

There have been various approaches to parse natural language and transform it into a query language 

such as SPARQL, Description Logic, or Cypher. In the past, to be tractable it was usually necessary to 

put constraints on the natural language. For example, some form of structured English along with 

completion and constraints that prohibit users from entering sentences that the system cannot 

understand (Sowa, 2014) or as in (Koutsomitropoulos, 2011) to use a hybrid language that is still a 

structured query language but designed to be more intuitive and English like than query languages 

designed for developers such as SPARQL. Another approach used by (Benhocine, 2022) is to attempt to 

parse any form of the natural language but to fall back to partially automatic query generation when the 

translator is unable to turn the natural language into a complete and valid query. The most ambitious of 

these approaches is to attempt to transform arbitrary natural language to query languages such as 

SPARQL (Liang, 2021). 

 

The BACKBORD system (Yen, 1991) developed at the Information Sciences Institute is one of the 

first examples of ontology-based semantic search. This system utilized the Loom language to model the 

domain of electronic parts and provided users from the Defense Logistics Agency with a forms-based 

semantic search tool to find parts by descriptions of their functions and capabilities. Loom is an 
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implementation of Description Logic. The Loom language and reasoner were major influences on the 

design of the OWL language and reasoner. BACKBORD users could define a search in terms of logical 

relations, restrictions on relations, and specific values, essentially all the logical formulas that can be 

expressed in OWL axioms. BACKBORD then created a class description that was classified by the 

reasoner and all the classes and instances that were subsumed by this new class were  returned as the 

results of the query. Users could then iteratively refine the query by further editing axioms or values 

from the results of the first query. BACKBORD implemented a paradigm known as retrieval by 

reformulation which has been demonstrated to be similar to the way adults (Williams, 1981) and 

children (Rutter, 2014) recall  information from long term memory. E.g., when recalling a person 

known in high school and verbalizing their recall protocol, subjects typically remember other memories 

that are semantically close to the memory they are trying to retrieve and use that memory to refine their 

search criteria until they focus on the specific memory they are attempting to recall. E.g., trying to 

remember Mary, they remember Carol and then remember “oh yes Carol was in the band and so was… 

that’s it her name was Mary”. Retrieval by reformulation has since been implemented in many different 

tools for searching the web, documents, and databases and empirical evidence supports the hypothesis 

that the paradigm is intuitive and a productive way for users to search large complex data (Rieh, 2006), 

(Rahman, 2023). 

 

Another example of a forms-based semantic search tool is the consumer portal for the Australian 

Ministry of Health (PoolParty, 2016). This portal utilized ontology models describing the healthcare 

domain such as diseases, medication, and services to provide a self-service portal for Australian 

consumers resulting in decreased costs and better healthcare outcomes.  

 

An example of the graph-

based UI approach for semantic 

search was the COVID*GRAPH 

system shown in Fig. 1. 

COVID*GRAPH (DeBellis, 

2022) was developed by a 

consortium of volunteer 

researchers who created the 

system to help researchers and 

clinicians easily find journal 

articles and other relevant 

documents related to containing 

the spread and developing a 

vaccine for the Covid virus. 

Users would begin either by 

entering keywords or for more 

technical users a query in the Cypher query language. This would return an initial set of nodes in the 

knowledge graph that would be displayed visually in a default graph. The user could then manipulate 

the graph in a multitude of ways and use the domain knowledge of the graph to guide them toward 

papers, people, and other resources. Another example of semantic document search using a graphical UI 

from the Covid pandemic was the Cord-19 system (Li, 2022). Both systems modeled similar domains: 

Genes, Diseases, Documents, and Authors and utilized the structure of the knowledge graph to provide 

users with a powerful graph-based UI. The literature shows that sophisticated users such as researchers 

tend to enjoy the power of a graph-based UI whereas less sophisticated users such as consumers or 

procurement staff prefer a traditional forms-based UI.  

Fig. 1. Example of graphical semantic search 
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1.4.1.2. Semantic search indexing 

The most challenging task in building a semantic search system is bridging the gap between 

traditional information indexed by keywords and semantic models such as OWL. The simplest 

approach is to have all the searchable data defined in a semantic form. This was the approach used in 

BACKBORD. While this approach can work for some domains in the era of big data it is seldom viable 

beyond proof-of-concept demonstrations. Typically, what is required is some form of natural language 

processing. The most common types of indexing can be divided into three categories of NLP: domain 

specific, Named Entity Resolution (NER), and vector embedding.  

 

In the domain specific approach, developers use specific information about the domain and various 

ad hoc NLP approaches such as stemming and regex (Bird, 2009) to analyze text descriptions and map 

them to the appropriate entities in the ontology. One recent example of this is (DeBellis, 2023) where 

stemming and other capabilities of the AllegroGraph Free Text Index (FTI) tool (Franz Inc., 2023) were 

used to map data collected about Non-Governmental Organizations (NGOs) to an ontology model of 

the UN Sustainable Development Goals. This approach goes by many names. E.g., in (Vanjulavalli, 

2012) this approach is described as Web Crawling.  

 

Named Entity Recognition (NER) is a technique provided in NLP libraries such as Spacy (Altinok, 

2021) to analyze the syntactic structure of sentences and look for patterns that indicate a phrase is an 

instance of an entity type such as a Person, Organization, Date, and Currency. This is one of the most 

promising areas for future work with ontologies (Al-Moslmi, 2020) as the default entities in an NER 

model can be further refined with domain specific models based on an ontology. This approach has 

been used in many systems such as (Song, 2019), (Kejriwal, 2022), and (D’Souza, 2022). 

 

Vector embedding refers to the representation of meaning as a vector in an N dimensional conceptual 

space. Vectors are implemented as a one-dimensional array of hundreds to thousands of floating-point 

numbers. Vectors can represent the semantics of an individual word, a sentence, a paragraph, or an 

entire document. When modeling word meaning, each value represents a semantic feature of the word. 

The values are also normalized so that they are all in the same range, e.g., between 0 (meaning that 

feature is irrelevant for the text string) to 1 (meaning that vector is as relevant as possible for the text 

string). E.g., in the vector for the word “apple” the value for the noun feature would be close to 1 and 

the value for the verb feature would be close to 0 because “apple” is virtually always used as a noun and 

never as a verb. The word “love” however, would score close to 1 on both the noun and verb feature 

since it can be used as either a noun or a verb.  

 

In vector embedding the system begins with a default vector for each word. Linear algebra techniques 

are then used to model interactions among words and to generate higher level meaning of sentences and 

paragraphs as vectors. The most common introductory example is doing vector subtraction of the vector 

for man from the vector for king results in the vector for queen. The term embedding refers to the 

interaction among each word to refine their vectors and to develop a higher-level vector for sentences 

and paragraphs. The default word vectors go through a series of transformers (Vaswani, 2017) which 

are matrices that map the vectors for one word to the vectors for other words. Thus, the original default 

vectors for each word become highly specialized to model each word’s specific meaning as embedded 

in a particular text. Examples of knowledge graph semantic search systems that utilize this approach are 

(Bernstein, 2006) and (Chakraborty, 2019). 
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1.4.2. Review of previous RAG systems 

The RAG architecture was first defined in (Lewis, 2020). In that paper, the domain was still general, 

what was different was that the RAG system was used to answer specific kinds of questions in a more 

accurate way. The document corpus was a 2018 dump of Wikipedia, and rather than being used for 

general chat as an LLM, the RAG system was used to answer four specific types of questions: open-

domain question answering, abstractive question answering, Jeopardy question generations, and fact 

verification. On all four types of questions the RAG system outperformed the previous best 

performance of more general LLMs such as BERT. In initial work this was the focus of RAG, not on a 

specific domain but on the same general domain as LLMs but focused on answering specific types of 

questions or analysis. In addition to those described above, early RAG system performed specific tasks  

such as paraphrasing and summarization (Li, 2022).  

 

Due to the exponential growth in interest in LLMs the RAG architecture was recognized as 

addressing the issues that prevented LLMs from being used by skilled professionals and that has been 

the primary focus in the last two years. In all of these systems, the domain knowledge (typically a 

corpus of documents) is stored in a relational database. Examples include documents for customer 

support and legal documents (Gao, 2023). The advantages of a RAG system built on a knowledge graph 

compared to the traditional relational database method are described in section 2.2. 

2. Method: knowledge graphs as the knowledge base for RAG 

This section describes the fundamental principles of the system. An ontology is utilized to describe 

the RAG domain and a knowledge graph to store the document corpus.  

2.1. Knowledge Graph RAG Architecture 

Figure 2 is an abstract description of the standard 

architecture for an LLM such as ChatGPT. The 

user interacts with the LLM, asks questions, gives 

it tasks, and the LLM creates responses based on 

the large amount of general text it has processed. 

As described above, this is very useful for many 

types of problem, however the problems of hallucinations, bias, black-box reasoning, and lack of depth 

make it unsuitable for many professional users such as doctors. Figure 3 shows a standard RAG 

architecture. This figure is an adaptation of figure 3 in (Gao, 2023). In the RAG architecture we 

substitute domain specific documents for the general knowledge that an LLM uses. The LLM is still 

utilized to create vectors for the user question and the domain specific documents and to generate an 

answer to the question in natural language. However, the use of domain specific documents allows the 

RAG system to be utilized where an LLM would not be appropriate.  

 

Figure 4 illustrates the enhanced knowledge graph RAG architecture. This architecture utilizes one 

integrated knowledge base to store both the vectors created by the LLM as well as the corpus 

documents and the additional contextual domain knowledge provided by the ontology. 

 

 

 

Fig. 2. Standard LLM Architecture 
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2.2. Advantages of the Knowledge-Graph RAG Architecture 

This approach to semantic search provides the best solutions to the various architectural options for 

semantic search described in section 1.4.1: 

 

 NLP User Interface. This approach combines both the benefits of natural language parsing 

and generation with the graphical query capabilities of knowledge graphs. The previous 

approaches to natural language understanding of questions described in section 1.4.1.1 were 

complex to build and maintain. Structured English is unnatural for non-technical users, 

especially compared with the capabilities of modern LLMs to parse and generate text that is 

comparable to a human speaker. Generation of query statements from natural language is 

prone to failure and when it does fail does not fail gracefully. E.g., (Sowa, 2014) has several 

examples that demonstrate language that is syntactically correct but does not translate 

appropriately to logic or a query language. This is especially an issue as the system’s target 

users (dental clinicians in India) are primarily not native English speakers. In the competency 

questions created to test the system the domain expert included several minor grammatical 

errors common in non-native English speakers. The RAG system (powered by ChatGPT) was 

able to understand all the competency questions regardless of minor grammatical errors. 

Structured English and other systems that translate English to query languages would not 

handle such errors.  

 Graphical User Interface. This approach brings all the power of an LLM to parse natural 

language with no constraints. At the same time, the answers to questions can be provided 

both in natural language and in a graphical form that allows the user to further explore 

relevant documents and other knowledge that is relevant to their question by expanding 

nodes and otherwise manipulating graph views of the knowledge graph as the graphical UIs 

described in 1.4.1.1.  

Fig. 3. Standard RAG Architecture Fig. 4. Knowledge-Graph RAG Architecture 
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 Indexing. This approach utilizes one of the modules in the LLM to generate vectors that 

represent the meaning of text. Vector embedding leverages the flexibility of LLMs and can 

generate meaning vectors that are highly accurate and on the very small number of cases 

where they may fail, they fail gracefully. I.e., they simply create a vector that is less accurate. 

The other approaches to indexing are far more brittle and when they fail far more likely to 

index either incorrectly or not at all.  

 

The advantages of this knowledge-graph based approach compared to traditional RAG based on a 

relational database are: 

 

 Knowledge reuse. Building on ontologies leverages the large amount of curated domain 

knowledge both for horizontal domains such as metadata (e.g., the Dublin Core, BIBO, and 

Prov vocabularies) and for vertical domains such as dentistry (the Oral Health and Disease 

vocabulary) and general medicine (the OBO foundry and the National Institute of Health 

vocabularies).  

 Fast, Agile, development. As described in (DeBellis, 2022) semantic technology can enable 

rapid, Agile development because developers are working at the analysis level rather than the 

design level. For domains that have highly interconnected data, knowledge graphs and query 

languages such as SPARQL and Cypher are more flexible, easy to use, and efficient than 

SQL which again facilitates rapid development that can easily accommodate new 

requirements.  

 Flexible, Agile, maintenance. Semantic models can be modified far easier than relational 

tables. This makes maintenance and enhancement faster and less error prone (McComb, 

2019).  

 Improved context. The semantic model brings additional context by a semantic description of 

the domain. This context can be used to display concepts that are relevant to discovering 

additional documents or other knowledge sources in the system.  

 Graphic retrieval by reformulation. As described in  1.4.1.1 retrieval by reformulation is a 

paradigm that has been demonstrated to be a good fit for semantic technology and has been 

shown by many implementations and evidence from cognitive science and experiments with 

user subjects to be an intuitive and efficient way to search large stores of complex knowledge. 

Utilizing a knowledge graph as the knowledge base for a RAG system enables 

implementation of retrieval by reformulation with a graphic user interface. In addition to 

returning the documents used by the LLM to generate answers, the system returns additional 

entities in the ontology and can display them in a graph. The user can then further explore 

this graph and iteratively discover additional relevant knowledge.  

3. Results: The current prototype 

This section describes the current prototype implementation (called DrMo from the acronym for the 

initial ontology) of semantic search via Retrieval Augmented Generation based on integration of an 

LLM and knowledge graph. All the code, Corpus, ontologies, and knowledge graphs are available via 

an open-source license at (DeBellis, 2024). 



M. DeBellis et al. / Integrating Knowledge Graphs and LLMs to Implement Retrieval Augmented Generation 

1570-5838/18/$35.00 © 2018 — IOS Press and the authors. All rights reserved 11 
 

3.1. Ontology Development 

The starting point for the system was the Dental Restorative Materials Ontology (DrMo). The DrMo 

system followed best practices by reusing entities from the OBO Oral Health and Disease (OHD) 

vocabulary as well as several other standard vocabularies for medicine, knowledge organization, and 

materials engineering. See (Dutta, 2023) for details. The DrMo ontology had no model for documents 

nor metadata as such a model was not required for the initial project. One of the first steps in this phase 

was to extend the ontology by adding reusable entities for documents and metadata from Dublin Core 

(DCMI, 2024), BIBO (DCMI, 2024a), and Prov (Prov W3C Working Group, 2013).  

 

The ontology design was enhanced utilizing the Protégé ontology editor. Protégé is an open-source 

best in class tool for ontology modeling. However, a graph database was also required to store the large 

amount of metadata required to model and search the document corpus. The AllegroGraph graph 

database was selected for the following reasons: 

 

 AllegroGraph is one of the best graph databases in terms of scale, efficiency, and reliability.  

 AllegroGraph natively supports the W3C semantic web standards: OWL, RDF/RDFS, and 

SPARQL.  

 The Gruff visual graph browser that is part of the AllegroGraph system provides a predefined 

tool to visualize and manipulate large complex graphs.  

 The AllegroGraph Python client is robust and well documented. Python was the language of 

choice because of the many data science and machine learning libraries it supports. In 

addition, interns from the data science programs at the University of California, Berkeley and 

the University of Wisconsin, Madison were used to supplement the team and they are most 

familiar with Python.  

3.2. Corpus creation 

The project began in January of 2024 as a Semantic Search project with the specific goal of 

addressing the issues of fraudulent and defective dental material products in India and other developing 

nations as well as providing a tool for general education of such clinicians. In addition to expanding the 

DrMo ontology to model documents and metadata, a document corpus was begun. Criteria for the 

corpus were defined and the domain expert executed searches on the relevant search sites. Matching 

document metadata was saved in CSV files which were then loaded into the knowledge graph with a 

Python function. The search criteria for the initial corpus are: 

 

 Articles from the journals Dental Materials and Cochrane review articles. The domain expert 

determined these to be the best initial sources for information that would be most useful to 

the target users.  

 Articles from the last five years. This was done to focus on the most up to date information. 

This was critical due to the dynamic nature of the domain. This also is one of the ways the 

corpus knowledge base outperforms an LLM such as ChatGPT. Due to the intensive effort 

required to train an LLM, an LLM typically does not contain data from the most recent 

months or even years.  

 Primary keywords for searching are Resin Based Composite, Glass Ionomer Cement, Resin-

modified Glass Ionomer Cement, and Dental Amalgam. Direct Dental Restorative Material 

was added as a required phrase with each keyword.  
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 The Elsevier site is the primary tool to 

search for relevant articles. Metadata for articles 

that are deemed appropriate for the corpus are 

downloaded and saved in CSV files. Relevant 

metadata includes authors, title, url, abstract, date, 

and keywords.  

 We also manually added documents that 

were deemed to be essential for our users. E.g., 

manuals and product safety data sheets from 

manufacturers such as 3M, specific articles on 

fraudulent and defective dental material products, 

etc.  

3.3. Data pipeline 

Figure 5 illustrates our data pipeline. CSV files 

created by the domain expert are passed to the 

technical team. The CSV files  are transformed so 

each heading is replaced by the IRI for the 

property that each column is meant to populate. 

This simplifies the complexity of the Python 

function to load the CSV files. The Python loader 

processes the header by validating that each IRI 

maps to an existing data property. If a header doesn’t map to a data property, then the loader aborts 

before loading any data to avoid corrupt data. The metadata from the CSV files is loaded into data 

properties. Each row in the CSV file corresponds to a new instance of the Document class, usually an 

instance of Journal Article, a subclass of Document.  

3.3.1. Post processing from strings to things 

 

The next step in the pipeline is to post process the new objects. Post processing converts many of the 

data properties into one or more new or existing objects and an appropriate value for a document object 

Fig. 5. Data pipeline 

Fig. 6. Post processing 
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property. This process is often referred to as “strings to things” (Singhal, 2012) and is illustrated in fig. 

6. In that figure we see examples of data properties from Dublin Core: creator, abstract, and source, 

transformed into objects and object property values. The creator strings are parsed and for each name 

the system searches for an existing instance of the Person class with the same first and last name. If no 

such object exists, it is created. Then the new or existing Person object is made a value of the has 
Author object property for the Document.  

 

Similarly, the source data property which records where a document was published is transformed to 

an object property. In this case there are currently only a handful of sources, so they are defined as part 

of the ontology. The abstract is processed using the AllegroGraph Free Text Index (FTI) feature which 

facilitates searching for close matches for names or phrases that correspond to the rdfs:label of any 

entity in the ontology. In addition, skos:altLabel and skos:prefLabel are utilized to define synonyms for 

entities. If there is a match, then a value is asserted on the is About annotation property. In this case an 

annotation property is used because it is possible for a document to refer to a class or even property as 

well as an instance. Initially is About was an object property and puns were utilized when it was 

appropriate to connect a document with a class or property. However, as puns began to proliferate the 

team decided that an annotation property was simpler and alleviated the complexity of dealing with 

large numbers of puns. The loss of reasoning power sacrificed by using an annotation rather than an 

object property is minimal as the only reasoning that was utilized was assertion of inverse values. Since 

the values are all asserted in Python code it is trivial to assert the inverse at the same time as the normal 

value. A sub-property of is About is: is About Product which is defined to record specific Dental 
Material Products that a Document refers to. Since these links are especially of interest it was 

considered worthwhile to have a special property for them. 

 

The original plan was to use Spacy and Named Entity Recognition for this type of post processing. 

That may be a future enhancement. However, for the current data most of the required processing can 

be performed adequately with Python string manipulation functions and the AllegroGraph Free Text 

Index. A major reason for this is that with a few exceptions, the data that is post processed is not 

narrative data, but simple strings and Spacy is primarily designed to analyze narrative text. For example, 

the author string parser was first modeled using the Person entity recognizer in Spacy. However, Spacy 

failed to correctly parse simple strings such as “Last1, First1; Last2, First2” and these could easily be 

processed with Python functions such as split. In the future, the team plans to utilize NER and Spacy to 

do a more complete processing of the is About and possibly other values. 

3.3.2. Loading and processing documents 

The final step in post processing is document processing. In this step the document that is the target 

of the uri in the metadata of each document is retrieved. To provide the best information for the RAG 

system, it was required to generate vectors for the full documents as well as the abstracts. Experiments 

with vector generation and discussions with developers at Franz indicated that generating vectors for 

small sections of text is preferable to generating one vector for the entire document. Creating vectors for 

sections of a document provides much more detailed semantics for the corpus. In addition, this is a 

better design decision in terms of usability. One of the goals of the project is to enable busy clinicians to 

find the specific information they need quickly and easily. Providing a source that is an entire document 

requires the clinician to process what are often dense complex papers to find the specific information 

they need. Dividing the documents into smaller chunks and generating vectors for each chunk enables 

the system to focus the attention of the clinician directly on the specific section of the document that 
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addresses their question. The graphical user interface then allows the users to easily expand their focus 

to the entire document if so desired. 

 

The natural structure for the documents is to simply follow the structure that articles as well as most 

materials from manufacturers already provide. I.e., a document can be thought of as a tree where the top 

node is the document, the next level are the first level sections. The branches of each section are their 

sub-sections and so on with any sub-sections of those sections. This is the approach we utilize with the 

object property has Sub Section. This property creates a part of hierarchy starting from the document to 

sections and sub-sections. To implement this an HTML Python library called Beautiful Soup 

(Richardson, 2007) was used. This library can parse documents into sections by finding tags such as ‘h2’ 

and ‘h3’.  

 

The vast majority of the documents in the corpus are available in HTML format. However, 

documents such as product manuals are only available as PDFs. The PDF format is a print format and 

not designed to be manipulated programmatically. Hence, to parse PDF documents a tool called 

PDFMiner (Shinyama, 2019) is used. PDFMiner recursively searches through a directory and returns a 

list of PDF paths. For each PDF file, it generates an HTML file path by replacing the directory and file 

extension. It then converts each PDF into HTML format, writing the output directly to the 

corresponding HTML file. Once the PDF has been transformed to HTML the HTML parser can be used.  

 

The prototype currently supports only HTML and PDF format documents, but this is simply a 

question of not investing effort until it is required. Those are the only formats required for the corpus to 

date. In the future, other formats such as Google and Microsoft Office may be required, and the system 

will be enhanced to process such documents 

when needed. As with the document 

processing done to date, this is essentially a 

solved problem where the work is integration 

of reusable libraries rather than developing a 

large amount of custom code.  

3.3.3. Generating vectors 

The final step in the data pipeline is vector 

generation. This is done with each string 

value of the dct:abstract property for a 

document and for the text property for a 

document section. This is accomplished with 

a general-purpose Franz function called 

agtool that is executed at the Linux shell 

(Franz Inc., 2024). To generate vectors, one 

passes the appropriate parameters to agtool 

such as the knowledge graph, the properties 

containing text that are to be assigned vectors, 

and the Open AI API key. Agtool then 

communicates with the Ada 003 model via 

the Open AI API and generates a vector for 

each text string that is the value of one of the 

data properties passed to it. One of the 
Fig. 7. Run time architecture 
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features of the latest version of AllegroGraph is that it stores vectors in an efficient database that is 

tightly coupled with the ontology. To the developer it seems as if there is simply one repository that 

contains both the knowledge graph and the vector embeddings.  

3.4. Run-time architecture 

Figure 7 illustrates the run-time architecture of the system. The numbers in each description correspond 

to the order that each event occurs at in a user interaction. To begin the user is presented with a simple 

user interface defined using an open-source Python tool called Streamlit (Snowflake Inc, 2024). See fig. 

8 for an example of the UI. The user types in a question to the top window in the UI. This question is 

then used with a predefined template to generate a SPARQL query. An example generated SPARQL 

query is:  

 
SELECT * 
WHERE {bind("Does AB restorative in Class II cavities without adhesive system, result 
                           in an acceptable failure frequency after a one-year period?" as ?query)   
       (?response ?score ?citation ?content) llm:askMyDocuments (?query "drmo" 2 0.8). 
        ?citation drmo:hasAuthor ?author; 
         drmo:publishedIn ?publication. 
OPTIONAL {?citation drmo:isSubSectionOf ?document.} 
OPTIONAL {?citation drmo:isAbout ?entity.} 
OPTIONAL {?citation drmo:isAboutProduct ?product.}} 
 

Everything in the query is predefined in the template except the actual question which is passed from 

the streamlit question box into the SPARQL query. The additional parameters in the query are examples 

of the additional context that integrating an LLM with a knowledge graph can provide. When the 

SPARQL query executes, the question is passed to the Ada 003 Open AI model which returns a vector 

that represents the meaning of the question. AllegroGraph then compares this vector with the existing 

vectors in the vector/knowledge graph using the cosine nearest neighbor function to find vectors that are 

within the threshold semantic distance of the question. Any vectors in the knowledge graph that are 

greater than the threshold defined in the query (.8 in this example) are considered relevant. If no such 

vectors exist, the system returns a predefined answer that there is not enough information in the 

knowledge graph to answer that question. This is an example of how the RAG architecture eliminates 

hallucinations. AllegroGraph then passes the relevant vectors from the corpus along with the question 

vector to  gpt-3.5-turbo. GPT uses these vectors and only these vectors to return an answer. The answer 

and the relevant text excerpts (abstracts or segments of a document) are returned along with other 

relevant entities from the knowledge graph.   
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3.5. An example use case 

 Fig. 8. User interface for an example use case 

 

Figure 8 shows the user interface for an example use case. The user has entered a question in the box 

in the upper left corner. The system generated a SPARQL query that found the relevant objects using 

the cosine nearest neighbor function. The system found a paper that provided the correct answer and 

ChatGPT used the objects from the knowledge graph to generate the natural language answer. In 

addition, the text for the matching object is shown in the box on the right. The answer to the clinician’s 

question was definitive: the use of AB restorative in the situation the clinician queried resulted in a high 

rate of failure. The answer to the same question from ChatGPT was much more lengthy but non-

committal. With some detail omitted for brevity, the response from ChatGPT to this same question was: 

 

“The success of a Class II cavity restoration using an amalgam or composite material without an 
adhesive system depends on various factors including the size and location of the cavity, the material 
used,… Ultimately, whether a restoration without an adhesive system results in an acceptable failure 
frequency after one year would depend on the specific clinical circumstances, the skill of the 
practitioner, and the patient's oral health and habits. It's essential for dental professionals to consider 
the best available evidence, their clinical judgment, and the patient's individual needs when selecting 
materials and techniques for cavity restorations.” 

 
The user then selects the “View answer graph in Gruff” link below the answer box on the left. This 

launches the Gruff knowledge graph browser with all the objects that were returned in the SPARQL 

query in fig. 9. In fig. 9, the user is hovering the mouse over one of the nodes for the author’s name. 

The user selects that node and chooses to show any triples currently not visible that have the author as 

the object and have the predicate has Author. This results in the revised graph shown in fig. 10. This is 

an example of the retrieval by reformulation paradigm described in section 1.4.1.1 using a graphic 



M. DeBellis et al. / Integrating Knowledge Graphs and LLMs to Implement Retrieval Augmented Generation 

1570-5838/18/$35.00 © 2018 — IOS Press and the authors. All rights reserved 17 
 

rather than a forms-based user interface. The user is able to refine and elaborate their query based on 

information retrieved from the initial query.  

 

 
Fig. 9. Graph of objects returned from question in fig. 8 

 
Fig. 10. Revised graph after user expands an author node 

 

3.6. Summary of work to date 

The current DrMo system contains 828 documents and has been tested with 50 different competency 

questions created by the domain expert on the specific topic of dental material products for direct 
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restoration. On all 50 questions, the system was superior to the answers generated by ChatGPT, often in 

dramatic ways as in this example where ChatGPT provided no definitive answer, but DrMo did. 

Development began in January and continues to the present. The current system has not been evaluated 

by actual clinicians, only by the domain expert on our team (Dr. Dutta). In parallel with the technical 

work, we have been conducting a survey of clinicians in India to measure their receptiveness and trust 

toward using LLMs, specifically ChatGPT, in a clinical setting. This pool of clinicians will be our 

initial pool for real users to evaluate the next version of the system. 

 

The one major failure is that the team had planned on utilizing Named Entity Recognition (NER) as 

implemented in Spacy to develop sophisticated recognition of entities in the ontology that are 

referenced in the document text. Given the other technologies that were required, Spacy proved a bit 

more of a learning curve than anticipated and using more basic NLP techniques such as stemming, and 

wildcard matching provided acceptable results. Another interesting issue is that to date the team has 

found that specific documents we hoped to incorporate from the beginning, e.g., guidelines and 

bulletins on how to spot fraudulent and defective dental material products are difficult to find or simply 

may not exist for the Indian market. One option that has been considered is if they don’t exist then just 

write them. E.g., create a volunteer group of dental experts in India and across the globe who may be 

interested in writing such documents. An intriguing option is to team with leading manufacturers who 

have a vested interest in the topic as well.  

 

We plan to greatly increase our corpus in the next few months and also seek out clinicians to do real 

world tests comparing the performance and usability of DrMo with ChatGPT. The major technical 

barriers we need to overcome for this are making the system accessible via the Internet and 

performance. The current system must be run on a local machine. It should be straight forward to move 

the system to the Internet, that was one of the reasons we chose the Streamlit tool for our user interface.  

However, the current performance of the system is only adequate. The primary issue is that the Open AI 

API can sometimes take a while to return a response. Also, while the Streamlit tool is very easy to use, 

it can also be somewhat slow, although this is mostly an issue for the first use, after the first query 

where information is cached performance significantly improves. After we deploy the system on the 

Internet, we will test its performance and investigate ways to improve it if needed.  

4. Discussion 

4.1. Critical evaluation against related work 

The RAG architecture is one of the most investigated and discussed at present. The achievements of 

Large Language Models such as ChatGPT have captured the imagination of the world. At the same time 

the four issues described in section 1.2 prohibit LLMs from being utilized for many professional 

applications. RAG provides an architecture that solves these issues.  

 

However, while RAG is one of the hottest topics among developers at this time, there are currently 

few implementations of RAG utilizing an ontology that we could find on Google Scholar. In Google 

Scholar, the one paper we could find on using ontologies to implement RAG to solve a domain problem 

was (Xu, 2024) which focuses on a very esoteric topic related to ancient Chinese literature. The current 

literature focuses primarily on ways that LLMs can help automate the creation of ontologies (Krishna, 

2024), (Vamsi,  2023). This includes using a RAG architecture to help automate the development of 

ontologies (Sabrina Toro, 2024). 
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This is one of those examples, where industry seems to be ahead of academia. AllegroGraph is one of 

the first vendors to offer features in their product specifically to integrate knowledge graphs and LLMs. 

In addition, at least two other leading vendors of Semantic Web technology have created similar 

product offerings: NebulaGraph (NebulaGraph, 2023) and OntoText (OntoText, 2024). All three 

vendors have emphasized the RAG architecture as one of the best opportunities to integrate the 

technologies. While these vendors have been aggressive in this space and provide various demos of 

their technology, this project is to the best of our knowledge one of the first to utilize a real-world 

domain ontology to solve an important and difficult problem.  

 

4.2. Planned Next Steps 

The planned next steps for this project are: 

 

1. Host the system on the Internet and perform performance testing and improvement. This will 

enable testing with actual domain experts other than the domain expert who is a member of 

our team. As described in 3.6, we have concurrent to this technical work been performing 

surveys of clinicians in India regarding their use and trust of ChatGPT. These survey 

participants will be our initial users who will evaluate the system for usability, accuracy on 

arbitrary questions, and usability of additional features to browse the knowledge graph. Our 

plan is to first perform testing with a small (3-5) group of users, to revise the UI based on 

feedback from the initial user group and then to roll out that revised version to a larger group 

(30 or more) of clinicians.  

2. Enhance the capabilities to recognize ontology entities in the corpus text utilizing the Python 

Spacy library’s Named Entity Recognition capabilities. Spacy is capable of recognizing 

complex concepts, far more than just recognizing individual words or short phrases, it can 

recognize various sections of text distributed across one or more sentences as examples of 

entities such as relations. This is similar to a great deal of work currently being done by other 

teams to partially automate the development of ontologies using LLMs such as (Krishna, 

2024), (Vamsi,  2023), (D’Souza 2022), and (Sabrina Toro, 2024). We may leverage some of 

this research or develop our own simpler capabilities in Spacy. This will enhance the 

connectivity of the corpus documents to relevant entities in the ontology.  

3. Redesign the ontology. We plan to redesign the ontology to better leverage the OBO Oral 

Health and Disease ontology. We learned of the OHD ontology well into our development of 

the original DrMo ontology and as a result have been piece meal adding classes and 

properties from OHD and other OBO ontologies. This project has made it clear that a new 

ontology is required, one that starts with the entire OHD ontology as a baseline and then adds 

the needed entities for dental restoration materials and products as well as the entities to 

model documents.  

4. Create vectors for the complete ontology. To date we have focused on creating vectors only 

for corpus documents. However, the ontology itself is an excellent store of knowledge and 

we have already had some good preliminary results constructing vectors for some of the 

labels of ontology entities. This is another reason to rework the ontology. We plan to be 

much more rigorous including text definitions, alt labels for synonyms, and other text that 

can be vectored and utilized by the LLM. Another possibility is to utilize one of the more 

intuitive output formats such as Manchester Syntax (Horridge, 2012) to create vectors that 

represent the semantics of the ontology. One other possibility is to write a simple NLP 
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generator that utilizes the ability of Spacy to understand tense, plurals, etc. This would be a 

custom tool to generate readable English from the ontology and create vectors for that 

English version of the ontology.  

4.3. Conclusion: Knowledge Graphs complement Large Language Models 

John Sowa (Sowa, 2011) offers the conceptual framework for understanding the essential differences 

between the semantic and LLM approaches. LLMs are based on induction and probabilistic reasoning 

and semantic technology is based on deduction and logical reasoning. Humans use both types of 

reasoning every day, and the future of AI will include both. This approach of utilizing semantic and 

machine learning systems in a synergistic way that exploits the benefits of both currently has significant 

traction in industry. The state of the market for enterprise data architectures in industry are data fabrics 

and data mesh (DeBellis, 2023). Both architectures treat machine learning and semantic technology as 

essential technologies for utilizing enterprise data. These architectures use semantic technology to 

define data catalogs, metadata, and enterprise data models (McComb, 2019), (Dehghani, 2020). They 

use LLMs and other machine learning technology to analyze big data stored in data lakes, to automate 

tasks such as customer support, and to predict customer behavior and other events important to the 

business (Fortune Business Impact, 2023), (DeBellis, 2023).  

 

This project offers evidence for the power of another approach: using semantic and machine learning 

technology together in an integrated application. In this way the power for induction and statistical 

reasoning can be supplemented by the power of domain models, explanation, and logical reasoning. 

Each technology complements the other. In this project, the use of an ontology and knowledge graph 

eliminates the problems of hallucinations and black-box reasoning. The use of an LLM enables very 

reliable and fairly easy to implement natural language processing for both input and output and captures 

meaning via vector embedding. It is our hope that this project may help pave the way for future 

applications that successfully integrate semantic and machine learning technology. Both for RAG 

architectures and other hybrid architectures. The potential applications of this integration are virtually 

limitless. There are countless domains: healthcare, genetic engineering, legal, security, and financial 

services to name just a few, where experts perform analysis that could be greatly assisted by an NLP 

powered assistant but where the problems with traditional LLMs inhibit their use. This integrated 

approach leverages the power of semantic technology to deliver answers based on evidence and explicit 

knowledge while leveraging the unparalleled capability of LLMs to interface with the user in natural 

language.  
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