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1. Introduction 

Generative artificial intelligence (AI) became widely available with the release of GPT 
3.5 by OpenAI in 2022 [33]. As the capabilities of the underlying large-language model 
(LLM) technology became more apparent, possible applications have captured the 
imagination of many. Ontologies – logically well-formed controlled vocabularies 
designed to represent entities and relationships among them – and knowledge graphs – 
ontologies merged with actual data about entities and associated relationships – have 
been identified as crucial for advancing research on and applications of LLMs [3, 6].  
Recent research has explored the application of LLMs for ontology alignment [14-18], 
mining unstructured data for knowledge graph creation [19-27], the generation of 
ontological classes using LLMs [25, 28-32], and the creation of ontologies created using 
AI models [4]. However, to our knowledge there have been no serious attempts to 
generate ontologies or knowledge graphs that extend from an upper-level ontology or 
substantially reuse ontology content from domain ontologies extending from such an 
upper-level. The result is that nearly all research on the generation of ontologies using 
LLMs runs the risk of creating ontology silos, ontologies designed to represent 
overlapping domains that are not able to be integrated using standard computational 
methods without significant costs. Put another way, researchers have sought to determine 
whether LLMs can create ontologies and knowledge graphs without asking whether they 
should. What should be clear is that LLMs can be leveraged to create such artifacts, but 
this should be no surprise. It is in some sense rather easy to create ontologies and 
knowledge graphs: just write a script to convert column headers in a dataset to classes in 
the Web Ontology Language (OWL). What is more challenging is constructing these 
artifacts that are aligned with existing standards, such as the widely-used Basic Formal 
Ontology (BFO).  

With this in mind, we are interested in determining the extent to which LLMs can 
support ontologists trained in the use of a specific top-level ontology. In what follows, 
we outline an empirical investigation into this question using BFO as our top-level. More 
specifically, in the first section we defend the importance of extending from a top-level 
ontology. The second section introduces relevant features of the Generative Pre-trained 
Transformers (GPTs) we investigate. The third section reports the results of an 
experiment exploring the capabilities of ChatGPT4 in generating ontology classes. The 
next three sections iteratively explore the creation of “My Ontologist”, a GPT designed 
to act as a BFO-trained ontologist, as well as the methods used to create these GPTs, 
measures of their performance, and the results of the application of a refined version of 
the model to generate textual definitions based on BFO and its extensions. While our 
results our promising, we close by observing that the recent release of GPT4o reveals 
substantial setbacks in the quality of definitional content produced by the model.  



2. Top-Level Ontology 

Ontologies often serve as structured frameworks for organizing information, allowing 
researchers across various domains to systematically categorize and integrate knowledge 
based on a hierarchy of entities and relationships among them. Ontologies facilitate not 
only the uniform representation of subject areas but also enable interoperability among 
disparate systems. This is achieved through the semantics that ontologies provide, which 
also allow for a hierarchy to be easily navigable and enable automated reasoning across 
large datasets, which can be of enormous use to data analysts. But these goods can only 
be provided if ontologies are well-constructed. If, per the previous section, one creates 
an ontology simply by running a simple command on a spreadsheet file, then there is no 
guarantee that the resultant ontology will even be logically consistent, and it is likely that 
the ontology will not have sufficient logical structure to support automated reasoning. 
Furthermore, such an ontology would not come with even minimally useful semantics. 
This is partly why automating ontology construction has not been particularly effective 
prior to the recent ascent of LLMs. We have historically needed human cognitive powers 
to create sophisticated ontologies. And even when employing human ontologists, the 
benefits of ontologies can only be provided when one of three things is true of the 
ontologies that organizations use in their disparate knowledge graphs: (1) the knowledge 
graphs use the same ontology, (2) the knowledge graphs use ontologies that are not the 
same but for which we can provide mappings between terms, or (3) the knowledge graphs 
use ontologies that are extended from some top–level ontology which defines more 
general terms and relations. (1) is the simplest case, but is not relevant to our purposes 
here because LLMs should not be used to carry out cut-and-paste commands. (2), on the 
other hand, is beyond the scope of this paper. We deal primarily with the question of 
whether and how LLMs can help carry out the operations necessary for (3). The way that 
most human ontologists best ensure the usefulness of their ontologies to organizations is 
by extending from top-level ontologies. In extending from a top-level ontology, 
ontologists adopt a set of metaphysical assumptions common to the rest of the 
community similarly employing that top-level ontology. Thus, their ontologies share 
some very basic semantics and fundamental logical structure which helps to ensure that 
they maintain interoperability, reasoning capability, etc. It is when ontologists fail to 
employ top-level ontologies that they reproduce precisely the sort of data silos that they 
ought to prevent. 

BFO is an upper-level ontology recognized by the International Organization for 
Standardization as the first top-level ontology standard. BFO is a highly general 
framework designed to be extended into various domains, such as medicine, industrial 
manufacturing, defense and intelligence, and so on. BFO is used in over 600 ontology 
projects worldwide, including in the Open Biological and Biomedical Ontology (OBO) 
Foundry, the Industrial Ontology Foundry (IOF), and the Department of Defense (DOD) 
and Intelligence Community (IC) Foundry effort. BFO and one of its more widely-used 
extensions – the Common Core Ontologies suite – has, moreover, been adopted by the 
DOD and IC as the “baseline standards” for ontology development [2]. This broad 
acceptance and application highlights BFO’s versatility and its importance in enhancing 
semantic interoperability and data analysis capabilities across different sectors. BFO’s 
status makes it attractive for further use, deepening already explored domains and 
branching out to cover new domains. There is, however, a shortage of BFO trained 
ontologists, resulting in a growing need for BFO-based ontology engineering support. It 



is our hope the results of the following work will provide such support by leveraging 
LLMs.  

3. How Do GPTs Work? 

Generative Pre-trained Transformers (GPTs), such as OpenAI’s ChatGPT series and 
EleutherAI’s Pythia, are a type of LLM based on the Transformer architecture [9]. This 
architecture fundamentally changed the landscape of natural language processing (NLP) 
by building upon the previously dominant recurrent neural network (RNN) models. The 
core mechanism of GPTs involves self-attention layers that process input data in parallel, 
allowing for more scalable and efficient learning of dependencies within data. GPTs are 
"pre-trained" on a large corpus of text, which helps the model learn the general structure 
and nuances of a language, from syntax to contextual relationships between words. 

The training of a GPT model occurs in two major phases: pre-training and fine-
tuning. During pre-training, the model is exposed to a vast dataset and learns to predict 
the next token in a string, given the tokens that precede it. This phase is unsupervised, 
meaning it does not require labeled data, which allows for the use of a diverse range of 
texts during training. The objective is to develop a robust model that understands 
language patterns and can generate coherent text sequences. Following this, the model 
undergoes fine-tuning, where it is adjusted to perform specific tasks such as translation, 
question-answering, or text summarization. This stage involves training on a smaller, 
task-specific dataset, enabling the model to optimize its responses for particular 
applications. 

The capabilities of GPT models are broad, ranging from generating readable text to 
solving complex analytical problems. By leveraging the vast amount of learned data, 
GPTs can produce outputs that mimic human-like text, making them useful in 
applications such as chatbots, content generation, and more complex tasks like coding 
assistance and data analysis. The adaptability and scalability of GPTs make them a 
powerful tool in both academic research and real-world applications, driving forward the 
boundaries of what machines can achieve in the realm of human language. Given these 
capabilities, it seems reasonable GPTs can be leveraged to aid in the generation of 
ontologies. GPT4 has proven adept at creating code in Python [5], Java [10, 13], HTML 
[7, 12], JavaScript [11], SQL [1], and combinations [8]. GPT4s ability to create 
syntactically adequate code suggests it should be capable of creating syntactically 
adequate Resource Description Framework (RDF) serializations, such as RDF/XML and 
Turtle, and in fact, it can for simple prompts: 
 
 

Prompt: “Write a triple for any class in XML and then the 
same class in Turtle” XML representation of a person named 
“Alice” 
 
Output:  
    <Person> 
    <name>Alice</name> 
    </Person> 
 



   @prefix ex: <http://example.org/> . 
    ex:Person1 a ex:Person ; 
    ex:name "Alice" . 

Figure 1. A simple prompt for RDF. 

This suggests a straightforward use of GPT4 is to generate code that can be incorporated 
into an already existing owl file.  

4. Methods 

To generate triples in alignment with a standard, we first provide the necessary 
annotation property IRI’s from a preexisting ontology. For example, we provide the 
annotation properties: 
  

Annotation IRI 

Label http://www.w3.org/2000/01/rdf-schema#label 

Subclass http://www.w3.org/2000/01/rdf-schema#subClassOf 

Definition http://www.w3.org/2004/02/skos/core#definition 

Contributor http://purl.org/dc/elements/1.1/contributor 

Example http://www.w3.org/2004/02/skos/core#example 

Table 1. Provided annotation properties. 

Placing these IRI’s into a Chat GPT4 prompt that asks for a definition of ‘human’ 
generates the following turtle triples: 
 
Prompt: “Make a BFO conformant definition of ‘Human’” 
 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
@prefix skos: <http://www.w3.org/2004/02/skos/core#> . 
@prefix dc: <http://purl.org/dc/elements/1.1/> . 
@prefix : <http://example.org/ontology#> .  
@prefix bfo: <http://purl.obolibrary.org/obo/BFO_> . 
@prefix owl: <http://www.w3.org/2002/07/owl#> . 

 
:Human rdfs:label "Human" ; 
       rdfs:subClassOf bfo:0000040 ;  # material entity; 
       skos:definition "A material entity that is a member 
of the species Homo sapiens, characterized by complex organ 
systems and capable of cognitive functions and social 
behaviors." ; 
       dc:contributor "Jane Doe" ; 
       skos:example "John Doe participating in a complex 
social interaction." . 
 

http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2004/02/skos/core#definition
http://purl.org/dc/elements/1.1/contributor
http://www.w3.org/2004/02/skos/core#example


GPT4 correctly identified the parent class and provided the correct IRI form 
‘material entity’. For the most part, the differentiating features are acceptable. However, 
when asked to provide a model of a more complex entity, like ‘student,’ GPT4 errs:  
 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
@prefix skos: <http://www.w3.org/2004/02/skos/core#> . 
@prefix dc: <http://purl.org/dc/elements/1.1/> . 
@prefix : <http://example.org/ontology#> . 
@prefix bfo: <http://purl.obolibrary.org/obo/> . 
 
:Student rdfs:label "Student" ; 
         rdfs:subClassOf bfo:BFO_0000040 ;  # Material 
Entity 
         skos:definition "A material entity that is a human, 
formally engaged in learning, typically enrolled in an 
educational institution such as a school or university." ; 
         dc:contributor "John Doe" ; 
         skos:example "Jane Doe studying at a university 
library." . 
 

First, GPT4 did not ask any clarification questions to disambiguate the meaning of 
‘student.’ Instead, it assumed that we meant to model the human that is a student. This is 
problematic because much of the work of human ontologists lies in rooting out and 
attempting to clarify ambiguities in human language use. A failure to do so can result in 
bad models of a portion of reality, or fine models of the wrong portion of reality. Here, 
we could have intended for it to provide a definition for the class of individuals who are 
students, or to provide a definition for the student role, the role that one bears when they 
are a student and which cannot be reasonably understood as a material entity, much less 
a kind of human. In this case, we have a definition for the former class which—though 
it probably has the same extension as an appropriate definition supplied by a human 
ontologist competent in  BFO—contains two further mistakes, one practical and one 
technical. The practical misstep of this definition is that it breaks BFO definition 
convention. The BFO community adheres to a convention of using the Aristotelian 
definition schema. Their class definitions take the form “An A is a B that Cs”, which not 
only eases the cognitive load of creating, understanding, and maintaining definitions on 
human ontologists by imposing a common structure, but which also assists the 
understanding of both human ontologists and end users by pointing out where a class 
(represented by A in the schema) belongs in the hierarchy by noting its parent class 
(represented by B in the schema) and the characteristic(s) (represented by C in the 
schema) distinguishing that class from its parent and sibling classes. Rather than taking 
the form “A is a B that C’s”, as was the case for the ‘human’ example, GPT 4 provided 
the definition for ‘student’ in the form “A is a B that is a C that D’s”. As far as mistakes 
go, this is not the worst, and at the same time not particularly surprising, because GPT 4 
has not been trained on all and only text created by BFO-savvy ontologists in their 
professional capacity. Yet, this shows that in order to be useful to ontologists by writing 
definitions, GPT 4’s output would have to be further constrained by training or explicit 
commands. Otherwise, it will define classes in ways that might confuse human readers, 
who could misunderstand its definition here to mean that ‘student’ is a direct subclass of 
‘material entity’, or to mean that ‘student’ should be asserted as a subclass of both 



‘material entity’ and ‘human’. GPT 4, when given the appropriate annotation properties, 
is able to generate triples, but is limited when asked to perform more complex tasks that 
require pulling class information from more than one area of Basic Formal Ontology. 
The best use of this method is to provide the GPT with pre- curated class definitions in 
bulk and the appropriate annotation properties, then ask it to generate triples to be placed 
in an OWL file using VSCode or GitHub. Note, however, that this does not replace either 
the ontologist or the domain expert, since the ontologist must still work with the domain 
expert to create and curate class definitions. Instead, this use replaces ontology editors 
like Protégé and the writing of code by hand.  

The  more severe technical mistake is that it failed to acknowledge that a student is 
a human with a student role, which is the correct way to model this sense of ‘student’ in 
BFO. GPT 4’s definition does seem to imply that a student has a student role, but it does 
not make reference to the BFO class ‘role’, which would be the parent class of ‘student 
role’, and would be instrumental in distinguishing members of this class from humans 
who are not students. Therefore, this definition cannot obviously correspond to or be 
used to create appropriate class axioms, and constitutes bad ontological modeling of the 
portion of reality that we consider it (generously) to be intended to model. One reason 
that this is an important technical misstep in BFO is that BFO defines classes in terms of 
necessary and sufficient intrinsic properties for class membership. In BFO, instances of 
subclasses of ‘material entity’ (such as humans) are instances of those classes because of 
the way that they are, intrinsically, such that if they are no longer an instance of that class, 
there must be some corresponding change in their physical makeup [34]. This is clearly 
not how studenthood works. That is, one’s status as a student can change without one 
changing physically (imagine that one is expelled from school and has received the news 
via email, but has not checked one’s email yet). If BFO allowed extrinsic properties (such 
as one’s status as a student, senior ontologist, or pizza chef) to define classes, then the 
BFO model would lose much of its metaphysical plausibility. Therefore, it uses roles. 
Roles inhere in their bearers because of some special set of circumstances which do not 
require changes in the physical makeup of those bearers, whether these circumstances 
are social, physical, institutional, or otherwise contextual. In addition to these theoretical 
concerns, defining ‘student’ in the way that GPT 4 has would limit a knowledge graph’s 
utility in logical representation and reasoning. A knowledge graph structured with classes 
like this would be very difficult to usefully query or reason across without the application 
of a lot more human effort to create appropriate axioms, custom queries, or both. 

GPT 4, when given the appropriate annotation properties, is able to generate triples, 
but is limited when asked to perform more complex tasks that require pulling class 
information from more than one area of Basic Formal Ontology. The best use of this 
method is to provide the GPT with pre- curated class definitions in bulk and the 
appropriate annotation properties, then ask it to generate triples to be placed in an OWL 
file using VSCode or GitHub. Note, however, that this does not replace either the 
ontologist or the domain expert, since the ontologist must still work with the domain 
expert to create and curate class definitions. Instead, this use replaces ontology editors 
like Protégé and the writing of code by hand.  

Although not a success, this use of GPT 4 is not a complete failure either. There are 
encouraging signs that a GPT model could create ontologies. It correctly uses TURTLE 
syntax, can identify appropriate subclass relations, and can explain why it made the 
choices that it did. Perhaps, much like an early development ontologist, it requires a little 
bit of training.  



4.1. My Ontologist 1.0 

Methods: 
The first My Ontologist was created to be an expert generating Basic Formal 

Ontology conformant ontologist. The goal was to allow for a domain expert to be able to 
work with My Ontologist to create BFO conformant ontologies. Chat GPT allows for a 
user to create their own GPT. A user can connect up to 20 PDFs at the backend for the 
GPT’s knowledge base. My Ontologist 1.0 was given access to Building Ontologies with 
Basic Formal Ontology, the BFO 2.0 user’s guide, the BFO 2020 Turtle code saved in a 
PDF file, and Learning SPARQL. The goal was to allow the GPT to follow the principles 
stated in Building Ontologies, to follow the guidance provided by the user’s guide, to 
extend from Basic Formal Ontology. The purpose of Learning SPARQL was to allow 
the GPT to generate OWL files in the appropriate format. Prompts were then fed to 1.0 
and positive or negative feedback was provided based on the answer provided.  

Results: 
My Ontologist 1.0 was wholly unsatisfactory and as such, no longer exists. Rather 

than complete the tasks it was given, 1.0 explained how to complete the task. When asked 
to model something like ‘student,’ 1.0 would provide long answers that were about 
perspectivalism, ontological realism, and granularity. When asked again, 1.0 would 
explain the difference between the classes ‘continuant’ and ‘occurrent,’ the highest-level 
classes in BFO. If a user were patient, they could eventually coax 1.0 into providing 
definition, but these were often no better than the GPT 4.0 version; it broke definition 
convention and did not ask disambiguating questions.  

This was not the intended outcome. Our speculation is that 1.0 too heavily weighted 
‘Building Ontologies’ and the ‘BFO 2.0 Reference’ in its knowledge base since the 
information that 1.0 provided primarily resides in those documents.  

4.2. My Ontologist 2.0 

Methods: 
The desire for 2.0 was to pick up BFO conformant classes further downstream. 

Classes like ‘human,’ ‘act,’ and ‘information content entity’ are outside of the scope of 
BFO, so any class that 1.0 did successfully create duplicated efforts that already exist in 
an open and available manor. To remedy this, 2.0 was provided with BFO 2020, the BFO 
user’s guide, the entirety of the Common Core Ontology Suite and the publicly accessible 
domain ontologies from CUBRC, the CCO NIST User’s Guide, and three non-CCO BFO 
conformant domain level ontologies. To remedy the definition and practice problems, 
and to allow for 2.0 to create more sophisticated design patterns and definitions that both 
axiomatizes the hierarchy downwards and side-to-side, several academic papers that 
explicate aspects of BFO were also given the 2.0. Altogether, 20 PDFs documents, the 
current maximum allowable under the build-your-own GPT model, were attached. 

Results: 
Unfortunately, the CCO suite document was over one thousand pages long and when 

placed with the other documents, 2.0’s knowledge base became unwieldy. Furthermore, 
the academic papers failed to have the desired effect, with many of the problems present 
in the first iteration present in the second iteration. The cumbersome nature of the CCO 
document also made it difficult for the GPT to pinpoint the appropriate class, often 
providing definitions for classes that extended from inappropriate classes. The most 



significant problem was that the GPT would often crash before completing a response. 
Because of this, 2.0 was also deleted. 

4.3. My Ontologist 3.0 

My Ontologist 3.0 Design Methods: 
The lessons learned through the design failures of 1.0 and 2.0 were instrumental in 

creating a stable and informative 3.0. Rather than provide academic papers, My 
Ontologist 3.0 was given thirty-six rules that provide explicit guidance for the creation 
of ontology classes, focusing on clarity, objectivity, coherence, extensibility, user 
engagement, and the precise articulation of concepts. Furthermore, the rules contain 
directives to prefer defined classes over primitive classes, to strictly adhere to the 
Aristotelian definition structure, to not create new properties unless necessary, and create 
ontological labels for classes that append ‘role’ if the entity is a subclass of ‘role’ and 
‘act’ if it is an act. A complete list of rules can be found in the appendix.  

Again, 3.0 was given BFO 2020 and the entirety of the CCO suite. However, this 
time the CCO suite was kept in its modular form. These include the Quality Ontology, 
the Agent Ontology, The Extended Relations Ontology, the Artifact Ontology, the Time 
Ontology, The Geospatial Ontology, The Currency Ontology, the Event Ontology, the 
Units of Measure Ontology, and the Information Entity Ontology. Additionally, 3.0 was 
provided with CUBRC’s Modal Relation’s Ontology and Facility Ontology.  

The last major change is that 3.0 has access to axiomatic proofs of BFO 2020. This 
includes Alan Ruttenberg’s Common Logic and Prover 9 proofs of all BFO classes. This 
was done to ensure that the ontological framework adheres to rigorous logical standards, 
providing a solid foundation for accurately and consistently representing the real-world 
entities and relationships. These proofs help to validate the structural integrity and 
cohesiveness of the ontology, minimizing errors and ensuring that the ontology's 
classifications and relations are logically sound and theoretically justified. This approach 
aims to enhance the reliability and applicability of the ontology across various domains 
and use cases. 

Results: 
My Ontologist 3.0 is a significant improvement over previous iterations. When 

prompted with an ambiguous term, it asks the user questions to disambiguate the term. 
It proficiently extends classes from BFO, noting that ‘student’ is a role that a human 
bears, not a material entity, appropriately names it a ‘student role,’ and provides the 
conditions for which the role is realized. Questions of whether the definition is accurate 
aside, the area that the definition could be improved is replacing “individual” with 
“human,” allowing for easier axiomatization. 
 
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
@prefix owl: <http://www.w3.org/2002/07/owl#> . 
@prefix bfo: <http://purl.obolibrary.org/obo/> . 
@prefix : <http://example.org/ontology#> . 

 
:StudentRole rdf:type owl:Class ; 

    rdfs:subClassOf bfo:0000023 ;  # Role in BFO 
    rdfs:label "Student Role" ; 



    skos:definition "A role that is realized by an 
individual who is enrolled in and actively participating as 
a learner in educational processes."@en ; 

    rdfs:comment "This role applies to individuals who 
are registered students in educational courses or 
programs."@en . 

 
Furthermore, 3.0 was able to appropriately extend CCO classes and restricted its use of 
object properties to only those found in CCO. It could take several iterations to walk 3.0 
to the appropriate level or granularity, and required a person versed in CCO to point out 
when 3.0 invented a class or object property that was not in CCO. Here is an example of 
an exchange: 

Define ‘Vehicle Bed Mount’ 
My Ontologist 3.0: "Vehicle Bed Mount" is an equipment mount that is affixed to 

the bed of a vehicle and is designed to secure and support various equipment or cargo 
during transportation. 

User: Good, but “affixed: not in CCO. 
3.0: "Vehicle Bed Mount" is an artifact component that is part of a vehicle bed, 

designed to secure equipment or cargo by using a stable mounting interface to maintain 
position and safety during transport. 

User: Bad parent 
3.0: "Vehicle Bed Mount" is an equipment mount that is attached to the bed of a 

vehicle and is designed to secure and stabilize equipment or cargo during transport. 
User: “is attached to” is not in CCO.  
3.0: "Vehicle Bed Mount" is an equipment mount that is a component of the vehicle 

bed, designed to secure and stabilize equipment or cargo during transport. 
User: “is component” is not in CCO. 
3.0: "Vehicle Bed Mount" is an equipment mount that is part of the vehicle bed, 

designed to secure and stabilize equipment or cargo during transport. 
To show the level of success 3.0 reached, compare 3.0’s definition to an official 

CUBRC definition of the same entity that 3.0 did not have access to.  
‘Vehicle Bed Mount is an equipment mount that is designed to attach to the bed of 

a vehicle.’ 
The similarities between these definitions are promising, as well as how quickly 3.0 

was able to complete the task.  

4.4. Release of 4o: 

The release of 4o by Open AI has made 3.0 functionally useless. It no longer restricts 
itself to the documents attached on the backend. Even when the ‘search the internet’ box 
is unselected, My Ontologist still searches the web for an answer. When asked if My 
Ontologist has access to the internet, it answers in the negative. When asked to provide 
a BFO conformant definition, it immediately searches the web. My Ontologist and GPT 
4o behave in the same manner. Any progress that was made from the simple use of GPT 
4 to My Ontologist 3.0 has been completely undone.  
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